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in the weakly linear formulation of the problem, the equations of a cylindrical shell 
[i] for the axisymmetric case reduce to equations in normalized variables, which are used 
to derive the nonlinear Schrodinger equation for flexurewaves. This equation is used to 
examine the problem of the instability of modulation waves. The wave number region at which 
the stationary structure of the nonlinear waves can be destroyed due to the effects of decay 
instabilities is determined. 

if the wavelength is assumed to be much greater than the shell thickness and if only a 
geometric nonlinearity is considered, the nonlinear equations of a cylindrical shell for the 
axisymmetric case have the form 
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Here u(x, t) and w(x, t) are the longitudinal and radial displacements of the mid-thickness 
surface from the undeformed state; c -2 = p(i - ~2)E-Z; p is the density; ~ is PoissonTs ratio; 
E is Young s modulus; k 0 = R-z; h 2 , oi ' = ni/iz; and R is the radius and h I is the thickness of 
the shell. 

Following [2], we introduce normalized variables by replacing $/$t ~ p and taking the 
Fourier transform 

t.l:t~] =- ~ W 

Then the system (i) and (2) takes the operational form 
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where fl,2k is the Fourier image of the right side of Eqs. (i) and (2) respectively; 

• = k~ + h~k 4. 

From the system (3) and (4), we obtain the expressions 

and 

Here 
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Fig. 1 

where 
r 

represents a dispersion relationship for the longitudinal and flexure waves respectively. 
The qualitative behavior of the dispersion curves ~,=(k) is shown in Fig. i. 

The normalized variables are derived by expanding the right sides of Eqs. (5) into the 
simplest fractions : 

$ $ 

Here the index s takes the values + and -; 
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~ S  .s and correspond to the longitudinal and flexure modes of oscil- The normalized variables a~ o k 
iation. The coefficients 

2 2 2 , ~c~ko k c u~ -- Q'z (k) 
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characterize the contribution of the longitudinal mode to the radial displacements and of 
the flexure mode to the longitudinal displacements respectively. We note that a k + 0 and 
~k ~ 0 in the transition from a shell to a plate (k 0 ~ 0). 

According to (7) and (8), the normalized variables conform to the equations 
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H e r e a f t e r  we o n l y  e x a m i n e  t h e  p r o c e s s  o f  n o n l i n e a r  s e l f - s t i m u l a t i o n  o f  f l e x u r e  waves  
(d  s = O) i f  o n l y  c u b i c  t e r m s  a r e  c o n s i d e r e d  on  t h e  r i g h t h a n d  s i d e ,  t h e  e q u a t i o n s  f o r  t h e  
f l e x u r e  waves  t a k e  t h e  f o r m  
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+ Vk_h_hf-bhbh.fd~,~_h_hf] + 3i ,! T ~ h _ ~ b h b ~ - b ~ d ~ , ~ h a _ ~  ~, 

( 9 )  
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we consider the equation b- k = 'Ok,* which follows from the condition that w_ k = w k is real 

Calculations lead to the following expressions for the coefficients for nonlinear inter- 
action: 
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if we use the procedure [3], Eq. (9) for a spectraily narrow packet with the basic wave 
number q can lead to the nonlinear Schrodinger equation for the flexure wave packet ~(x, t) 
(in the coordinate system which moves with the group velocity): 

Here 
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it is known [4] that the wave packet is unstable and that solitons of the flexure waves 
can form for vo > 0. in the general case, the expressions for v and o are rather complex. 
However, in two particular cases, q2 << k~ (long waves) and q2 ~> k~ (short waves), it is 
possible to conduct an analytical investigation. 

For long waves the packet is unstable, because 

% = c  ~ r ~ q  l--Twq-/~.o ), v(q)<O, a(q)=--V ' i  ~ c q a / 2 4 < O .  

i f  we c o n s i d e r  t h e  a s s u m p t i o n  t h a t  h2q 2 << 1, which i s  n e c e s s a r y  f o r  t h e  v a l i d i t y  o f  Eqs.  
and ( 2 ) ,  t h e n  f o r  s h o r t  waves we have t h e  r e l a t i o n s h i p s  

( 1 )  
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Here the coefficient o(q) is negative, except for a rather narrow range of (k,, q0) where 

kO = k,[l + 4p-K~n-l(i + ~ if + k, - 0, then o ~ -~; if = 1/2 v1 -~-'~k0 h-~, and q0 , o.o, ~t 2p-)]. q 

q ~ 'K, + 0, then o ~ +~; and o(q0) = 0 at the point q = q0- A small neighborhood (iq - ~*]" ' < 

a, where a < q0 - K,) of the point k, must be excluded from consideration, because the con- 
dition of weak nonlinearity of the problem formulation is invalid inside it. The singularity 
at the point q = k, results from a coincidence between the basic and doubling harmonics: ~(2k,) 
- 2~(k,) = 0. It can be shown that the root of this equation, computed using the exact Eq. (6), 
lies namely in the short-wavelength region of wave numbers. Thus, the stationary structure 
of the short waves will be destroyed in the region iq - k*l < a, due to the interaction with 
the secondary wave, and in the range k, + a < q < q0 due to the effects of the modulation 
instability. 

Numerical calculation of the coefficients v and a for R/h = 1600 (R/h I = 462) and P = 
0.3 confirms the results of the analytical investigation for long and short waves. 

in order to study the stability in the intermediate range of wave numbers (q ~ k0), we 
performed a numerical calculation of the coefficients v and o for the same values of R/h and 
~. it was shown that o(q) < 0 and v(q) < 0 for q < k b, and v~q)~ ~ > 0 for q > k b ~ 7k 0 is the 
inflection point of the dispersion curve ~2(k) (see Fig. i). The means that in this region 
the wave packet is unstable for q < k b. 

Investigation of the stability of the wave packet also requires considering the pos- 
sibility of nonlinear three-wave interactions. For perturbations of a packet of flexure waves 
with a frequency ~(q) in a cylindrical shell, the packet will be unstable to interactions 
with a pair of waves [with frequencies ~i(qi) and m2(q2), each of which can relate to both shear 
and longitudinal modes], if the following coincidence conditions 

~(q) = ~1(ql) + ~2(q2); ( i i )  

q = q l  -}- q2 t , •  
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are fulfilled in correspondence with the dispersion relations (6). in this case a decay 
instability [5] takes place. From analysis of the dispersion curves (6), it follows that 
fulfillment of conditions ~ii) ~ ~ and (12) is possible for q > 2k,. in particular if k 0 < ql < 
k, (let ql ! q2), it is possible to consider that ~i(ql) = ~0 = c2( i - ~2)k~ for the flexure 

branch [wi[q) = ~z2[q) and also ~2~q) = ~2~q)]~ Then by using (i0), we find from ~Ii) and (12) 
that m2 = m - w0, q2 = (~ - 2 ~0) I/4 (ch) -I/2, and ql = q - q2" If we take q < 2k, for the 
same region of ql values and consider that ~(q) < m(2k.~) = 2~0, we obtain w i + m2 > m. For 
values ql < k0, such that mi(ql) < m0, Eqs. (ii) and (i2) can be fulfilled only if q >> k,. 
The analogous situation arises in the case where the first longitudinal mode is selected for 
the first wave [~i(q) ~ ~l(q)]. 

Finally by summarizing the results obtained, we can conclude that a packet of flexure 
waves in a cylindrical shell is unstable in the following regions of wave n~nbers: 0 < q < 
kb, k, - a < q < q0, and q > 2k,. 
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ANALYSIS OF THRESHOLD-FREE FRACTD~E OF MATERIALS ON REFLECTION 

OF A COMPRESSION PULSE FROM A FREE Sb~FACE 

A. V. Utkin UDC 532.593 

investigations of spaiiing phenomena yield information about the resistance of materials 
to fracture under microsecond loads. The most reliable and informative method is the method 
in which the velocity of a free surface is recorded continuously [i]. Figure 1 shows results 
of such experiments for plexiglass and rubber (curves 1 and 2) [2, 3]. The character of the 
spaiiing of piexiglass is typical for solids. After the shock wave reaches the free surface, 
the velocity profile repeats the shape of the compression pulse in the sample. When the 
tensile stresses reach a critical value, the material fractures, the stresses in the fracture 
zone decrease, and there appears a compression wave, which reaches the surface in the form 
of a spaliation pulse. The subsequent velocity oscillations are due to the circulation of 
compression and rarefaction waves in the spaiied plate. The fracture stress is determined 
by the difference between the maximum velocity of the surface and the velocity in front of 
the spaliation pulse [i]. 

A fundamentally different result was obtained for rubber. According to Fig. i, in this 
case the velocity decreases monotonically and characteristic oscillations are not observed. 
Since there is no clearly pronounced spaiiation pulse, there arises the question of how the 
fracture process should be characterized, if the strength of rubber were negligible, then 
after the shock wave reaches the free surface the velocity of the surface would remain con- 
stant. The dashed line in Fig. i shows the velocity profile, constructed assuming that the 
strength of rubber is high. The experimentally observed time dependence differs from the 
extreme cases by high and negligibly low dynamic tensile strength. The sample remaining 
after this experiment did not exhibit any clear indications of fracture. 

it is known [4, 5] that rupture of eiastomers is preceded by formation of microscopic 
nonuniformities in the sample, which starts at stresses much lower than the rupture stresses. 
The formation of nonuniformities is in itself still not fracture. Thus, in tests under tri- 
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